/       /       /    Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC


Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Совсем недавно на глаза мне попался обзор линейных стабилизаторов напряжения на 3.3 Вольта.
Я даже принял участие в обсуждении, и как то там затронули тему питания устройств с 3.3 В питанием от литиевого аккумулятора.
А так как эта тема пересекалась с одним из моих будущих обзоров, то решил и я поэкспериментировать немного.

На самом деле эта тема тянется уже очень давно. По ТЗ мне надо питать устройство с напряжением питания 3.3 Вольта и током потребления около 0.5-0.7 Ампера. питать надо от литиевого аккумулятора.
Сначала хотел использовать линейный стабилизатор с ультра малым падением, но потом получил платку SEPIC конвертера и решил копать в этом направлении.
Первым делом хотел заказать микросхемы которые применены в готовом преобразователе, но мысль пошла дальше и привела к теме данного обзора и тому, что я в итоге сделал.

Так, стоп, что то я забежал далеко вперед, непорядок.

Заказано было две платы, вернее два лота.
В первом лоте было 5 плат, цена $1.94 за лот или 0.39 за штучку.

Платки представляют из себя повышающий DC-DC преобразователь изначально настроенный на 5 Вольт.
Продаются просто линейками, если надо, то плату можно легко отломить как кусочек шоколадки.
Данный вариант разделения плат называется скрайбирование, в необходимых местах текстолит прорезается почти до нуля и когда надо — отламывается по этой линии.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Плата по сути примитивная (ну если не считать что в микросхеме куча элементов).
Когда выбирал что заказать, то рассудил так, в крайнем случае применю компоненты по отдельности, даже те же гнезда, они тоже денег стоят.
Пайка аккуратная, плата чистая.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Но разъем явно припаивали левой задней ногой, полная противоположность пайке с другой стороны, там скорее всего работал автомат.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

По плате была составлена схема. К слову я немного сделал неправильно, срисовав схему после экспериментов, но об этом позже.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Так как плата изначально явно задумывалась для питания от аккумулятора, то для исключения влияния проводов я по входу поставил конденсатор 330мкФ 6.3В.
Скажу сразу, все платы запустились без проблем.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Небольшой тест платы. Так как платы изначально брались под переделку, то он скорее просто для общего представления.
Стартует плата при напряжении чуть больше 1 Вольта, выходное напряжение немного завышено.
Слева на всех фотографиях блок питания (левый индикатор — напряжение, правый — ток), справа нагрузка, там индикаторы подписаны.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Максимальный выходной ток, который я смог получить от платы при питании 3.6 Вольта составил 0.55 Ампера.
При перегрузке микросхема просто уходила в защиту, температура в тестах не поднималась выше 70 градусов.
Небольшая справка, для конвертеров сделанных по топологии Step-Up самый тяжелый режим не КЗ, а перегрузка. При КЗ ток ограничен сопротивлением дросселя и падением на диоде, микросхема при КЗ отключена. А вот если защита сделана неправильно, то при перегрузке микросхема либо умрет от перегрева либо от превышения максимального тока силового ключа.
Сколько я не экспериментировал, плата работала корректно и при перегрузке уходила в защиту снижая выходное напряжение.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Проверил я и то, что творился на выходе преобразователя.
На осциллограмме явно видно, что родной конденсатор не справляется с пульсациями, добавление по выходу емкости в 100мкФ сводит пульсации почти на нет.
Делитель щупа осциллографа во время всех тестов стоял в режиме 1:1.
Как по мне, то преобразователь в исходном виде вполне неплох.
продавец декларирует 200мА от 1.5 Вольта питания и 500мА от 3 Вольт питания.
В реальности если и будет меньше, то ненамного.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Второй лот состоял из одной платы. Отзывы были весьма разными и не всегда хорошими, но так как эта плата также бралась под эксперименты, то мне было все равно.
Цена платы 0.6 доллара, ссылка на товар.


Изначально я искал микросхему повышающего преобразователя с более-менее нормальными параметрами. Но поиск вывел в итоге меня на платы с этой микросхемой, которые стоили ненамного дороже, но при этом на них уже была и микросхема и дроссель и еще всякая мелкота.
Здесь уже нет разъема, так как плата изначально позиционируется как универсальный повышающий преобразователь.
На странице продавца указаны параметры —
Входное напряжение: 2 В ~ 24 В
Максимальное выходное напряжение: 28 В
Максимальный выходной ток: 2А
КПД: более 93%.
Размеры 36 мм * 17 мм * 14 мм.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Снизу компоненты отсутствуют, название платы совпадает с названием микросхемы, которая на ней установлена, собственно так я на нее и вышел.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Плата маленькая, особенно если учесть, что довольно много места занимают контактные площадки. Если контактные площадки отрезать, то размер станет заметно меньше.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Схема также простейшая, основана на микросхеме MT3608, на которую есть даже даташит.
причем параметры микросхемы весьма неплохие, собственно я сначала нашел даташит, потом микросхему, потом плату на ее основе.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

По плате также была начерчена схема, вывод 4 это вход управления микросхемой, для включения он должен быть соединен со входом питания.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

А вот первое включение меня сильно удивило.
На первый взгляд на фото ничего необычного, включен БП, к выходу подключена электронная нагрузка и на индикаторе отображается ток нагрузки в 0.18 А.
Все нормально если бы не одно НО, регулятор тока нагрузки выкручен на минимум, а минимальный ток у нее 20мА.
Явно что то не так.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

А «не так» оказалось в том, что плата на выходе имеет большие пульсации с высокой частотой (производитель декларирует частоту в 1.2 МГц).
После подключения параллельно выходу конденсатора емкостью в 100мкФ проблема нестабильной работы электронной нагрузки ушла.
Кроме того «помог» производитель, а вернее разработчик, разместив выходной конденсатор не около выходных клемм, а около микросхемы.
Стартует плата при 1.8 Вольта, установленное напряжение на выходе держит хорошо.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

В отзывах к плате писали, что выходное напряжение не регулируется.
Видимо человек просто не разобрался, хотя тут и производитель виноват.
Дело в том, что регулировка происходит на 8 оборотах подстроечника из 30! Да еще и при вращении влево О_о
Т.е. из привычного максимального положения крутим 22 оборота, при которых ничего не происходит и только последние 8 оборотов напряжение будет регулироваться, жуть.

Эта микросхема также не перегревалась в работе, правда и не выдала мне 2 Ампера.
При этом измерение температур показало, что при токах более 1 Ампера на плате начинает греться дроссель и выходной диод, это надо также иметь в виду.
Но стоит сказать, что 2 Ампера на выходе можно получить только при определенных условиях, и это максимум.

Уже когда писал обзор, то понял что я подавал на входной электролит (как в первом случае 330мкФ 6.3 В) аж 10 Вольт, но так как конденсатор был качественный, то он отнесся к этому равнодушно.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

А вот такие пульсации у платы без добавочного выходного конденсатора, неудивительно что нагрузка «сходила с ума».

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC


Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Так, пора перейти собственно к тому, зачем мне все это понадобилось (в смысле платы).
У меня уже был обзор готовой платы, полностью самодельного варианта, теперь попробуем сделать вариант с модернизацией готового преобразователя.

Ход мысли у меня бы примерно такой:
Надо широкий диапазон питания, соответственно надо SEPIC
После этого я начал искать специализированные микросхемы, затем подумал, а зачем мне собственно что то специализированное, если суть SEPIC преобразователя это модернизированный Step-up преобразователь.
Этот момент кстати очень важен, переделать можно именно повышающий, Step-down переделать нельзя по двум причинам —
1. У Step-down преобразователей силовой ключ стоит в положительном полюсе питания
2. Силовой ключ в таких преобразователях вполне может находится в полностью открытом состоянии, или закрываться на очень короткое время, что для повышающего почти однозначная смерть.

Нашел подходящую микросхему повышающего преобразователя и начал искать ее на Али, но в итоге нашел платы с ней.
После этого я поставил перед собой задачу получить SEPIC преобразователь путем минимальной доработки существующих плат повышающих преобразователей.

Ниже показаны оба типа преобразователей и видно, что отличие у них только в том, что в универсалом варианте добавлен дроссель и конденсатор, ВСЁ!

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Для начала я решил провести эксперимент над мелкими преобразователями. Я не зря заказал лот из 5 штук, дело было не только в экономии.
Дело в том, что топология универсального преобразователя подразумевает наличие двух одинаковых дросселей, а так как таких у меня дома не было, то я решил взять дроссель из такой же платы (плат то вообще пять).

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Попутно я пересчитал делитель обратной связи, сначала выяснив напряжение компаратора микросхемы.
В простенькой программе сделал источник 5.1 В (такое напряжение платы имеют на выходе), задал номиналы существующего делителя и получил около 1.22 Вольта.
После этого изменил выходное напряжение и подобрал один из резисторов так, чтобы на микросхему попадали те же 1.22 Вольта.
Эта операция не имеет отношения собственно к SEPIC преобразователю, просто мне надо было 3.3 Вольта, но из тех номиналов что были дома я смог подобрать только под 3.2 Вольта.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

А вот здесь и вылезло то, что я перерисовал схему уже после тестов.
Я хотел применить минимум дополнительных компонентов.
Дроссель был взят от одной из плат, резистор взял из запасов (хотя можно было и его взять из другой платы), конденсатор выпаял из старой платы монитора.
Вот как раз конденсатор лучше было взять от одной из плат преобразователя (откуда выпаивал дроссель), так как там конденсаторы имеют даже большую емкость и все равно не нужны.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Диод выпаивается, на его место паяется конденсатор.
Около микросхемы зачищается площадка, к ней паяется один вывод дросселя, второй паяется к площадке где раньше был катод диода.
К этой же площадке теперь паяется анод диода, а катод к правому выводу резистора 3.3к (через него питается светодиод).
Также надо обязательно перерезать дорожку, место видно на фото.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пробуем.
Стартует от 1.28 Вольта

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Хоть плата и работает, но стабильность выходного напряжения оставляет желать лучшего.
При маленьком токе нагрузки и входном напряжении в 4.2 Вольта выходное поднимается до 3.6 Вольта. Не то чтобы критично, но не очень хорошо.
При токе более 500мА срабатывает защита и выходное напряжение падает.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Погоням плату в разных режимах я пришел к выводу, что максимальный выходной ток в моем диапазоне будет около 300мА, но при этом кратковременно можно понимать до 400мА.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

В процессе экспериментов я также пробовал увеличить емкость конденсатора между дросселями, но никакого заметного результата это не дало :(

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

А вот уровень пульсаций получился весьма неплохим, слева в режиме повышения, справа — понижения.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Наигравшись с мелкими платками я перешел к более крупному «подопытному».
Суть доработки здесь абсолютно такая же, за исключением того, что плата была одна. Заказывал я ее одну потому, что необходимый дроссель у меня уже был в наличии.
Также доработке был подвергнут и узел регулировки выходного напряжения, путем полной ликвидации и замены на пару резисторов.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Здесь я также провел операцию по измерению опорного напряжения компаратора, у меня получилось 680мВ.
Для этого я выставил на выходе 10 Вольт, а потом выпаял подстроечный резистор и измерил его сопротивление в режиме делителя, на левой схеме он представлен верхними двумя резисторами.
Потом пересчитал делитель под необходимое мне напряжение (ну почти, у меня ближайшее было 3.5 Вольта), а потом забил на это, полез в даташит и узнал что на самом деле не 680мВ, а 600 :)))
В общем я применил нижний резистор на 2к, а верхний на 9.1к.
Эксперименты, они такие эксперименты :))))

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

После всех расчетов приступил к переделке.
1. Выпаиваем подстроечный резистор и постоянный резистор на 2.2кОм (ну или грубо — выпаиваем все резисторы).
2. На место постоянного резистора впаиваем резистор на 2к, перерезаем дорожку между дросселем и диодом.
3. С обратной стороны платы припаиваем второй резистор делителя (его потом можно изменить). Я долго думал, куда мне припаять этот резистор, даже забыв, что можно припаять его снизу :))
4. Между дросселем и диодом впаиваем конденсатор. Здесь та же ошибка, конденсатор можно было взять с одной из плат.
К дросселю припаиваем обрезок вывода какого нибудь радиоэлемента, направляем его в сторону скоса на дросселе.
Зачищаем и залуживаем площадку около выходных площадок.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Припаиваем дроссель одним выводом на площадку около выходных клемм, вторым (проволочным) к диоду. Я не зря обратил внимание на скос на дросселе, так он лучше становится.
Всё.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

В самом худшем режиме, при 2.6 Вольта на входе, плата сваливалась в защиту при токе около 700мА, в остальных режимах вела себя стабильно.
Вообще, в плане стабильности, плата стоит на голову выше предыдущих.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

При входном напряжении в 10 Вольт я спокойно получил выходной ток более 2 Ампер, но диод и дроссели грелись уже прилично, микросхема при этом имела температуру не более 70 градусов.
На последнем фото видно что при малом входном напряжении и выходном токе в 700мА напряжение на выходе опускается до 3 Вольт.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Выше я написал, что при входном напряжении около 2.9 Вольта (нижнее рабочее напряжение литиевого аккумулятора) я получил 770мА при напряжении 3 Вольта.
Мне показалось что виной тому малая емкость конденсатора, который установлен между дросселями, ради эксперимента я установил параллельно ему второй с такой же емкостью (на схеме указана уже суммарная емкость).

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

После замены выходной ток явно вырос и напряжение падало до 3 (вернее 3.04) уже при токе 1.11 Ампера.
Т.е. получается что с одним конденсатором максимальная выходная мощность при напряжении 2.9 Вольта была 2.31 Ватта, а при двух конденсаторах уже около 3.3 Ватта.
Мне кажется что это прогресс.
Вообще такие конденсаторы довольно дорогие и я бы вообще советовал поставить на это место родной конденсатор на 28мкФ взяв его со входа этой платы. На его место достаточно поставить керамический 0.22 (или пару) и электролит на 100-220мкФ.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Еще несколько тестов при разных входных напряжениях и выходных токах.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Тесты показали, что при работе от одного литиевого аккумулятора (диапазон 3-4.2 В) и выходном напряжении 3.3 Вольта плата нормально может выдать до ток 700мА.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Но вот пульсации у этой платы явно выше, пожалуй это единственный ее минус. Это пульсации с электролитом на 100мкФ по выходу.
Я выше писал, что скорее всего это обусловлено неправильной трассировкой, керамический конденсатор по выходу может улучшить ситуацию, но не думаю что сильно.
Вообще SEPIC считается самым «шумным» типом преобразователя, потому отчасти это его особенность.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Самые большие пульсации наблюдались конечно же при максимальных токах нагрузки. А более правильно — при максимальном входном токе.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Фото обоих плат после переделки. На большой плате дроссель гармонично вписался на место подстроечного резистора, мелкая плата внешне выглядит более грубо.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

А теперь сравнительное фото новых плат рядом с платой из этого обзора.
Видно что предыдущая плата кажется гигантом в сравнении с новыми.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPICПара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Кстати я не сказал бы что большая плата из этого обзора сильно слабее. В прошом обзоре я тестировал преобразователь при входном напряжении в 14 Вольт, выходном 3.3 и токе 2.5 Ампера. Эта плата смогла выдать ненамного меньше.
Но цена!!!..
Если предыдущий преобразователь стоил 5.7 доллара, то здесь, даже при худшем раскладе (покупка двух дорогих плат) вышла бы 1.2 доллара.
А если дома есть парный дроссель, то можно вообще уложиться в сумму около 0.8 доллара (плата + пара электролитов).

Суть данного обзора изначально стояла не в точном измерении характеристик, КПД и т.п. хотя я сделал достаточно разных измерений, а в том, чтобы получить универсальный преобразователь путем переделки дешевых повышающих.
Мне кажется что эксперимент удался, причем со второй платой я получил результат, сопоставимый с платой за 5.7 доллара, это более чем хороший результат.
А еще этот обзор может помочь в случае когда надо «здесь и сейчас», потому как плату повышающего преобразователя найти куда проще чем универсального (их вообще меньше в продаже, особенно в оффлайне).

Первая (мелкая) платка конечно слабовата, и напряжение у нее на выходе не так стабильно как у большой, но для ее переделки можно вообще ничего не покупать дополнительно, а сделать универсальный з двух повышающих.
При этом у нас останется запасная микросхема, диод, светодиод, разъем и несколько резисторов.
Вторая (большая) плата выходит несколько дороже и к ней надо либо дроссель, либо вторую такую же плату (это предпочтительнее).

Пару слов о платах в исходном виде.
Мелкие — Вполне себе рабочие платы, дешевые, не сильно мощные, при установке хотя бы небольшого электролита по выходу имеют низкие пульсации.
Заявленные 200мА (1.5В) и 500мА(3В) скорее всего не вытянут, но будут близки к этому.
Нагрев и надежность хорошая, я много раз перегружал плату, но она упорно уходила в защиту (защита не триггерная).

Большая — Ну тут отдельный случай. Реальный пример, как кривая проектировка может свести на нет хорошие характеристики установленных компонентов.
Да, компоненты на плате установлены нормальные, микруха вообще мне очень понравилась (надо будет купить с десяток в запас). Но тут и неправильная трассировка, и подстроченик включенный через одно место, и отсутствие электролитов по входу и выходу (при таких токах они уже не лишние).
Т.е. сама плата в том виде как есть мне не понравилась, но несложными усилиями от нее можно получить хороший результат. А еще лучше результат после переделки ее в универсальный преобразователь :)

На этом пожалуй вроде все, платы работают, профит получен, отчет написан, жду вопросов в комментариях :)
Эту страницу нашли, когда искали:
повышающий конвертор для 18650, dc-dc mt3608, mt3608 стабилизатор тока, mt3608 параллельное включение, mt3608 доработка, доработка повышающего преобразователя, добавление мощного транзистора в mt3608, двухканальный step up конвертер своими руками, mt3608 повышающий dc-dc преобразователь схема, step-up converter что это, mt3608, mt3608 замена на фирменный, mt3608 схема как поднять выходное напряжение, mc34063a повышающий преобразователь, mt3608 схема включения

Вас может заинтересовать

FR9888 или микросхема синхронного StepDown преобразователя
FR9888 или микросхема синхронного StepDown преобразователя
TP-link TL-WR702N или мой новый маленький помощник
TP-link TL-WR702N или мой новый маленький помощник
Универсальный преобразователь напряжения или пару слов от том, что такое SEPIC
Универсальный преобразователь напряжения или пару слов от том, что такое SEPIC
MC34063 Один из самых распространенных ШИМ (ЧИМ) контроллеров и небольшой экскурс в принципы работы DC-DC конвертеров.
MC34063 Один из самых распространенных ШИМ (ЧИМ) контроллеров и небольшой экскурс в принципы работы DC-DC конвертеров.

Комментарии: 12

  1. Lisin
    0
    Подскажите а чем отличаются микросхемы МТ 3608, В6285, В6286, SDB628.  Я понимаю что это одно и тоже/аналоги, но всёже! Разные производители? Партии? Где можно покапать?
    29 января 2017 14:13
    ЦитироватьОтветить
    1. B628xxПервый работает от 2 Вольт и выше, остальные относятся к группе B628xx, т.е. фактически идентичны и имеют диапазон входного от 1.6 Вольта.
      Обычно все они отличаются сопротивлением встроенного полевого транзистора, частотой работы и диапазоном питания.
      Но чтобы сказать точнее, надо смотреть даташиты, а они есть не всегда. 
      29 января 2017 22:19
      ЦитироватьОтветить
  2. Подскажите, пожалуйста, какой ток потребляет вторая (большая) плата без нагрузки? Возможно ли ее использовать в паре с литиевым аккумулятором (защищенным) без выключения?
    16 февраля 2017 23:40
    ЦитироватьОтветить
    1. Потребление на ХХ будет зависеть от входного и выходного напряжения.
      Кроме того зависит от того, сколько устройство должно работать от батареи.

      Попробую найти плату, но думаю минимум 5-10мА будет.
      17 февраля 2017 01:44
      ЦитироватьОтветить
      1. 10mA... Получается, что литиевый аккумулятор 16340 на 700mAh эта платка посадит менее чем за 3 дня...
        Есть какие-то пути решения это проблемы? Например, как-то отключать 4-ножку микросхемы при отсутствии нагрузки? Только как?
        17 февраля 2017 11:15
        ЦитироватьОтветить
        1. Ток попробую позже измерить, если найду плату :(
          А так да, обычно такие преобразователи не очень хорошо подходят для постоянного подключения.

          Отключать повышение можно, но как Вы правильно заметили, надо как-то определять наличие нагрузки. Повышающий преобразователь на выходе даже в выключенном состоянии будет выдавать входное минус падение на диоде, издержки схемотехники. 
          17 февраля 2017 11:41
          ЦитироватьОтветить
  3. Можно еще вопрос? )))  Если нужен повышающий преобразователь на больший ток, например на 3-4 ампера, возможно ли собрать его на MT3608? Судя по даташиту у нее "Internal 4A Switch Current Limit".
    Если нужен значительно больший ток, например 5-10А, как будет выглядеть схема преобразователя? Возможно у Вас есть или планируется обзор на эту тему?
    PS. Еще раз спасибо за Ваши обзоры и за то, что Вы пишите с ликбезом для новичков!
    17 февраля 2017 11:25
    ЦитироватьОтветить
    1. Для начала надо понимать, что если надо получить большой ток на выходе повышающего трансформатора, то на входе ток будет еще больше.
      Причем чем больше выходное напряжение, тем больше будет ток на входе.

      Потому сначала надо знать, какое напряжение и ток нужны, иначе может получиться так, что аккумулятор "не потянет".

      17 февраля 2017 11:38
      ЦитироватьОтветить
      1. Да, это понятно.
        На входе будет 1-2 литиевых аккумулятора, их напряжения известны. Ток они могут давать вполне приличный.
        Напряжение и ток на выходе пока для меня тоже не известны, но предполагаю, что это может быть от 9 до 18 вольт... Амперы тоже пока не известны.
        Данная схема может пригодится во многих случаях, поэтому было бы очень интересно, если у вас будет обзор на эту тему!
        17 февраля 2017 14:32
        ЦитироватьОтветить
        1. 1 или 2 лития это большая разница, при 3 Вольта преобразователю очень тяжело работать, при 6 и более куда легче.

          Хотя даже не так, само повышение до 18 с током даже в 1 Ампер на выходе даст ток от одного аккумулятора около 7 Ампер. При токе в 2 Ампера будет уже 14-15, а это значит надо высокотоковый аккум.
          Если поставить два аккумулятора, то ток сразу упадет в 2 раза и будет не 7-15, а 3.5-7.

          Я подумаю насчет плат мощных преобразователей, но их редко делают под входное от одного аккумулятора, от 5-7 Вольт уже куда реальнее.
          17 февраля 2017 20:11
          ЦитироватьОтветить
          1. Цитата: kirich
            Хотя даже не так, само повышение до 18 с током даже в 1 Ампер на выходе даст ток от одного аккумулятора около 7 Ампер. При токе в 2 Ампера будет уже 14-15, а это значит надо высокотоковый аккум. Если поставить два аккумулятора, то ток сразу упадет в 2 раза и будет не 7-15, а 3.5-7.


            Да понимаю это я ))) Поэтому и писал, что 1-2 аккумулятора. 3 или тем более 4 - тяжелые слишком...
            Просто не расписал свою мысль полностью... Извините... не всем дано )))

            Цитата: kirich
            1 или 2 лития это большая разница


            Если 9 вольт то и 1 литий потянет же? И до 12 вольт, наверное? Хотя большого смысла нет, токи правда большие получаются.

            Если 15-18 вольт нужно будет, тогда конечно 2 лития уже нужно однозначно, или больше.

            Цитата: kirich
            Я подумаю насчет плат мощных преобразователей, но их редко делают под входное от одного аккумулятора, от 5-7 Вольт уже куда реальнее.


            Очень буду ждать! ))) 
            17 февраля 2017 21:52
            ЦитироватьОтветить
            1. 1 литий потянет и 12 и 18 Вольт и больше, вопрос только в токе, не более.
              У каждой микросхемы есть ограничение по току встроенного ключа, чем больше хотим получить, тем будет больше ток через ключ.
              С ростом входного напряжения ток через ключ будет пропорционально падать, соответственно может так быть что с 1 аккумулятором не вытянет, а с двумя проблем не будет.

              Потому надо сначала определиться с техзаданием.

              Да, возможно подберу пару повышающих преобразователей, тогда и обзоры будут :)
              19 февраля 2017 00:03
              ЦитироватьОтветить

Добавить комментарий

Ваше имя:
Ваш e-mail:

Текст комментария:
Секретный код:
Кликните на изображение чтобы обновить код, если он неразборчив