Как устроен блок питания, часть 4
И если трансформатор наверное знает большинство, то снаббер в основном те, кто занимается блоками питания более плотно.
Весь узел на фото выделен красным, а снаббер я обвел зеленым.

Также его можно увидеть в народном блоке питания. На фото я вычеркнул диод, не имеющий отношения к снабберу.

И в моем самодельном блоке питания. Здесь его схема отличается и об этом я расскажу немного позже.

Схема типового обратноходового блока питания думаю знакома многим, подобные схемы часто встречаются в моих обзорах.

Выделим из нее ту часть, о которой я и буду рассказывать.
В нее входит снаббер, трансформатор, входной конденсатор и высоковольтный транзистор.

Отсечем ту часть, которая не имеет отношения к теме разговора, останется совсем мало деталей, думаю что так будет проще для понимания процессов.

Что же происходит в импульсном блоке питания во время работы.
Сначала открывается силовой ключ, через цепь выделенную красным, течет ток, энергия в это время запасается в магнитопроводе трансформатора.

После закрытия ключа полярность на обмотках трансформатора меняется на противоположную и ток начинает течь в нагрузку.

Но так как трансформатор и выходные цепи неидеальны, то на первичной обмотке возникает выброс напряжения, который начинает течь через снаббер.
Если вы посмотрите внимательно, то увидите, что начала обмоток помеченные точками, одинаково сориентированы по отношению к диодам D1 и D2, потому во время открытого состояния силового ключа эти цепи не работают.
Функция снаббера поглотить паразитный выброс, который возникает в первичной обмотке и тем самым защитить высоковольтный транзистор. У некоторых совсем дешевых блоках питания снаббера нет вообще, и это весьма вредно, так как снижает надежность.

В типовом блоке питания данный участок схемы выглядит так. Номиналы подбираются в зависимости от индуктивности обмотки трансформатора, частоты работы и мощности блока питания. Я не буду рассказывать о методике расчета, это довольно долго, но скажу лишь что здесь не работает принцип - чем больше, тем лучше, цепь должна быть оптимальная для определенных условий.

Некоторые наверное увидели диод в схеме снаббера и подумали - что-то знакомое.
Да, так и есть, ближайший аналог, это цепь защиты транзистора, который коммутирует питание обмотки реле. В данном случае он выполняет похожую функцию, не допускает выброса напряжения на транзисторе при выключении. Кстати если диод в этой схеме заменить стабилитроном, то работать должно лучше.

Так как вариант с диодом неприменим в варианте с трансформатором, то последовательно с ним ставят либо резистор с конденсатором, либо супрессор, как на этой схеме.

Еще одно новое слово - супрессор. Не пугайтесь, супрессор это по сути просто стабилитрон, но если у стабилитрона функция обеспечить стабильное напряжение, то у супрессора акцент сделан на импульсный ток и рассеиваемую мощность, стабильность напряжения в данном случае не так важна.
Выглядит он как обычный диод, при этом бывает двунаправленным, но тогда катод не маркируется. Наиолее распространенные супрессоры серий P6KE и 1.5KE. Первый имеет импульсную мощность 600 Ватт, второй 1500 Ватт. Существуют и более мощные, но нас они не интересуют.

Я немного переверну схему так, чтобы было более понятно как работает эта схема. В подобных схемах чаще применяют супрессоры на напряжение в 200 Вольт, например P6KE200A.
Благодаря этому напряжение на обмотке трансформатора не может быть больше чем 200 Вольт. Напряжение на входном конденсаторе около 310 Вольт.
Получается что на транзисторе напряжение около 510 Вольт. На самом деле напряжение будет немного выше, так как детали неидеальны, а кроме того в сети может быть и более высокое напряжение.

В даташитах к микросхемам серии ТОР часто была показана именно такая схема включения супрессора.
Такая схема имеет более жесткую характеристику ограничения, так как до 200 Вольт не ограничивает совсем, а потом старается обрезать все что выше 200 Вольт. Схема с конденсатором имеет немного другую характеристику ограничения, но на самом деле это не критично.

Для уменьшения мощности, рассеиваемой на супрессоре, параллельно ему можно подключить конденсатор.

Или вообще сделать гибрид из двух схем, где есть все элементы обоих вариантов, такое часто применяется в мощных обратноходовых блоках питания.

Иногда применяется альтернативный вариант защиты транзистора, супрессор включенный параллельно ему. Такой вариант применяется довольно редко, чаще в блоках питания имеющих низкое входное напряжение.

Например такое включение супрессора можно увидеть в РоЕ блоке питания, входное напряжение здесь не 310 Вольт постоянного тока, а всего до 70 Вольт.

Теперь можно перейти к трансформатору.
Трансформатор состоит из магнитопровода и каркаса, иногда конструкция дополняется специальным скобами, которые фиксируют магнитопровод на каркасе.

Чаще всего для них используются Ш-образные магнитопроводы. Если блок питания обратноходовый, каким является подавляющее большинство недорогих маломощных блоков питания, то между половинками магнитопровода должен быть зазор. Зазор делается либо между половинками, либо используется специальный магнитопровод, где центральный керн уже имеет зазор, а этом случае ширина зазора должна быть в два раза больше.

Обычно в качестве материала магнитопровода используется феррит, у фирменных магнитопроводов может быть нанесена маркировка и по даташиту можно узнать его характеристики, у более дешевых магнитопроводом чаще маркировки нет.

Вначале мотаются обмотки трансформатора, а затем на этот магнитопровод устанавливается каркас.

Процесс намотки мелких трансформаторов довольно прост.
Сначала мотаем первичную обмотку.

Затем вторичную, иногда в два и более проводов.

Если есть третья обмотка, чаще всего это обмотка питания ШИМ контроллера, то мотаем и ее.

В целях безопасности изолируем всю конструкцию.

После этого берем подобранный магнитопровод, в данном случае здесь у одной половинки средний керн укорочен.

Собираем всю конструкцию вместе. Магнитопровод чаще всего склеивается, но я обычно дополнительно фиксирую скотчем.

В итоге получаем небольшой аккуратный трансформатор. На фото трансформатор мощностью около 25-30 Ватт.

Этот трансформатор уже имеет мощность до 80-100 Ватт. Мотаются они подобным образом, но с некоторыми отличиями.

У трансформаторов рассчитанных на низкое выходное напряжение и большой ток выходная обмотка может мотаться либо литцендратом, либо шиной.

Величина выбора с первичной обмотке напрямую зависит от правильности намотки трансформатора и если для маломощных трансформаторов это не очень критично, то неправильная намотка мощного трансформатора может привести к печальным последствиям.
Обычно наматывают обмотки в три слоя (если используется три обмотки), первичная, вторичная и вспомогательная.
Но связь между обмотками можно сильно улучшить если вторичную обмотку разместить между двумя половинами первичной.

Кроме того рекомендуется мотать провод не внавал, а виток к витку, равномерно заполняя всю площадь каркаса. Обмотки рассчитанные на большой ток мотать лучше несколькими тонкими проводами, а не одним толстым.
Проблемы, которые могут возникнуть в этом узле:
1. Межвитковое КЗ в случае выхода из строя высоковольтного транзистора.
2. Перегрев трансформатора, последующее резкое уменьшение его индуктивности и выход из строя транзистора инвертора
3. Пробой диода снаббера, крайне редко.
4. Частичный пробой супрессора, например супрессор на 200 Вольт превращается в супрессор на 100 Вольт, ничего не выгорает, но БП не работает.
Эту страницу нашли, когда искали:
Схема принципиальная импульсного TIG-сварочного аппарата (Ж-л "Elektronika Praktyczna 2003-12) 47mm x 35V _ U1 "|баз"- ,200 C18 5t8 (4.79) U2 x 15V 10mk x 3s nk x 35V -100mk x 35V 100mк 16V| K VDN K1 5,1k (4 76) 国国 5.1k (4,79) 1=1,1/PF1 R8)C5=1,25-7,81 свк, трансформатор т2 в блоке питания, импульсный трансформатор 5 выводов, как работает импульсный трансформатор в импульсном блоке питания, 9, подбор цепочки снаббера перед импульсным трансформатором в компьютерном бп, импульсный блок питания схема, включение супрессор блок питания, 29, мощность силового трансформатора на компьютере, импульсный трансформатор из чего состоит, бп атх дежурка на 5h0165r, ea1721a datasheet, почему 3 обмотки в блоках питания, для чего нужен второй трансформатор в бп или 3 обмотка, как мотатать импульсный блок питания по обозначеным точках обмоток, снаббер на супрессоре, зачем трансформатор в импульсном блоке питания, 6, 5, td95n12kof11f4 datasheet, обмотка обратной связи импульсного трансформатора, pico автотрансформатор схема, 4, как убрать вторичную обмотку
Схема принципиальная импульсного TIG-сварочного аппарата (Ж-л "Elektronika Praktyczna 2003-12) 47mm x 35V _ U1 "|баз"- ,200 C18 5t8 (4.79) U2 x 15V 10mk x 3s nk x 35V -100mk x 35V 100mк 16V| K VDN K1 5,1k (4 76) 国国 5.1k (4,79) 1=1,1/PF1 R8)C5=1,25-7,81 свк, трансформатор т2 в блоке питания, импульсный трансформатор 5 выводов, как работает импульсный трансформатор в импульсном блоке питания, 9, подбор цепочки снаббера перед импульсным трансформатором в компьютерном бп, импульсный блок питания схема, включение супрессор блок питания, 29, мощность силового трансформатора на компьютере, импульсный трансформатор из чего состоит, бп атх дежурка на 5h0165r, ea1721a datasheet, почему 3 обмотки в блоках питания, для чего нужен второй трансформатор в бп или 3 обмотка, как мотатать импульсный блок питания по обозначеным точках обмоток, снаббер на супрессоре, зачем трансформатор в импульсном блоке питания, 6, 5, td95n12kof11f4 datasheet, обмотка обратной связи импульсного трансформатора, pico автотрансформатор схема, 4, как убрать вторичную обмотку
Товары по сниженной стоимости
Вас может заинтересовать
Товары по сниженной стоимости
Комментарии: 80
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.